

1

2 **Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the**
3 **Western Amazon basin**

4

5 Teh, Yit Arn^{1*}, Murphy, Wayne A.², Berrio, Juan-Carlos², Boom, Arnould², and Page, Susan E.²

6 ¹Institute of Biological and Environmental Sciences, University of Aberdeen

7 ² Department of Geography, University of Leicester

8 * Author to whom all correspondence should be addressed; email: yateh@abdn.ac.uk

9 **2. ABSTRACT**

10 Here we report methane (CH_4) and nitrous oxide (N_2O) fluxes from lowland tropical peatlands
11 in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes
12 in the Amazon basin. Trace gas fluxes were sampled from the most numerically-dominant
13 peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation,
14 *Mauritia flexuosa*-dominated palm swamp, and mixed palm swamp. Data were collected in
15 both wet and dry seasons over the course of four field campaigns from 2012 to 2014.
16 Peatlands in the PMFB were large and regionally significant sources of atmospheric CH_4 ,
17 emitting $36.05 \pm 3.09 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$. CH_4 emissions varied significantly among vegetation
18 types and between seasons. CH_4 fluxes were greatest for mixed palm swamp ($52.0 \pm 16.0 \text{ mg}$
19 $\text{CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), followed by *M. flexuosa* palm swamp ($36.7 \pm 3.9 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), forested
20 (short pole) vegetation ($31.6 \pm 6.6 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), and forested vegetation ($29.8 \pm 10.0 \text{ mg}$
21 $\text{CH}_4\text{-C m}^{-2} \text{ d}^{-1}$). CH_4 fluxes also showed marked seasonality, with divergent seasonal flux
22 patterns among ecosystems. Forested vegetation and mixed palm swamp showed
23 significantly higher dry season ($47.2 \pm 5.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$ and $85.5 \pm 26.4 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$,
24 respectively) compared to wet season emissions ($6.8 \pm 1.0 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$ and $5.2 \pm 2.7 \text{ mg}$
25 $\text{CH}_4\text{-C m}^{-2} \text{ d}^{-1}$, respectively). In contrast, forested (short pole) vegetation and *M. flexuosa* palm
26 swamp showed the opposite trend, with dry season fluxes of 9.6 ± 2.6 and $25.5 \pm 2.9 \text{ mg CH}_4\text{-C m}^{-2}$
27 $\text{C m}^{-2} \text{ d}^{-1}$, respectively, versus wet season fluxes of 103.4 ± 13.6 and $53.4 \pm 9.8 \text{ mg CH}_4\text{-C m}^{-2}$
28 d^{-1} , respectively. Nitrous oxide fluxes were negligible ($0.70 \pm 0.34 \text{ } \mu\text{g N}_2\text{O-N m}^{-2} \text{ d}^{-1}$), and did
29 not vary significantly among ecosystems or between seasons.

30

31

32 **KEYWORDS**

33 methane, nitrous oxide, peat, tropical peatland, Amazonia, Peru

34

35

36 **3. INTRODUCTION**

37 The Amazon basin plays a critical role in the global atmospheric budgets of carbon (C) and
38 greenhouse gases (GHGs) such as methane (CH_4) and nitrous oxide (N_2O). Recent basin-wide
39 studies suggest that the Amazon as a whole accounts for approximately 7 % of global
40 atmospheric CH_4 emissions (Wilson et al., 2016). N_2O emissions are of a similar magnitude,
41 with emissions ranging from 2-3 Tg $\text{N}_2\text{O-N year}^{-1}$ (or, approximately 12-18 % of global
42 atmospheric emissions) (Huang et al., 2008;Saikawa et al., 2014;Saikawa et al., 2013). While
43 we have a relatively strong understanding of the role that the Amazon plays in regional and
44 global atmospheric budgets of these gases, one of the key gaps in knowledge is the
45 contribution of specific ecosystem types to regional fluxes of GHGs (Huang et al.,
46 2008;Saikawa et al., 2014;Saikawa et al., 2013). In particular, our understanding of the
47 contribution of Amazonian wetlands to regional C and GHG budgets is weak, as the majority
48 of past ecosystem-scale studies have focused on *terra firme* forests and savannas (D'Amelio
49 et al., 2009;Saikawa et al., 2013;Wilson et al., 2016;Kirschke et al., 2013;Nisbet et al., 2014).
50 Empirical studies of GHG fluxes from Amazonian wetlands are more limited in geographic
51 scope and have focused on three major areas: wetlands in the state of Amazonas near the
52 city of Manaus (Devol et al., 1990;Bartlett et al., 1990;Bartlett et al., 1988;Keller et al., 1986),
53 the Pantanal region (Melack et al., 2004;Marani and Alvalá, 2007;Liengaard et al., 2013), and

54 the Orinoco River basin (Smith et al., 2000;Lavelle et al., 2014). Critically, none of the
55 ecosystems sampled in the past were peat-forming ones; rather, the habitats investigated
56 were non-peat forming (i.e. mineral or organo-mineral soils), seasonally-inundated floodplain
57 forests (i.e. *varzea*), rivers or lakes.

58

59 Peatlands are one of the major wetland habitats absent from current bottom-up GHG
60 inventories for the Amazon basin, and are often grouped together with non-peat forming
61 wetlands in regional atmospheric budgets (Wilson et al., 2016). Because we have little or no
62 data on ecosystem-level land-atmosphere fluxes from these habitats (Lahteenoja et al.,
63 2012;Lahteenoja et al., 2009b;Kirschke et al., 2013;Nisbet et al., 2014), it is difficult to
64 ascertain if rates of GHG flux from these ecosystems are similar to or different from mineral
65 soil wetlands. Given that underlying differences in plant community composition and soil
66 properties are known to modulate the cycling and flux of GHGs in wetlands (Limpens et al.,
67 2008;Melton et al., 2013;Belyea and Baird, 2006;Sjögersten et al., 2014), expanding our
68 observations to include a wider range of wetland habitats is critical in order to improve our
69 understanding of regional trace gas exchange, and also to determine if aggregating peat and
70 mineral soil wetlands together in bottom-up emissions inventories are appropriate for
71 regional budget calculations. Moreover, Amazonian peatlands are thought to account for a
72 substantial land area (i.e. up to 150,000 km²) (Schulman et al., 1999;Lahteenoja et al., 2012),
73 and any differences in biogeochemistry among peat and mineral/organo-mineral soil
74 wetlands may therefore have important implications for understanding and modelling the
75 biogeochemical functioning of the Amazon basin as a whole.

76

77 Since the identification of extensive peat forming wetlands in the north (Lahteenoja et al.,
78 2009a; Lahateenoja et al. 2009b; Lahteenoja and Page 2011) and south (Householder et al.,
79 2012) of the Peruvian Amazon, several studies have been undertaken to better characterize
80 these habitats, investigating vegetation composition and habitat diversity (Draper et al., 2014;
81 Kelly et al., 2014; Householder et al., 2012; Lahteenoja and Page, 2011), vegetation history
82 (Lahteenoja and Roucoux et al., 2010), C stocks (Lahteenoja et al., 2012; Draper et al., 2014),
83 hydrology (Kelly et al., 2014), and peat chemistry (Lahteenoja et al., 2009a; Lahteenoja et al.,
84 2009b). Most of the studies have focused on the Pastaza-Marañón foreland basin (PMFB),
85 where one of the largest stretches of contiguous peatlands have been found (Lahteenoja et
86 al 2009a; Lahteenoja and Page, 2011; Kelly et al, 2014), covering an estimated area of 35,600
87 $\pm 2,133 \text{ km}^2$ (Draper et al., 2014). Up to 90% of the peatlands in the PMFB lie in flooded
88 backwater river margins on floodplains and are influenced by large, annual fluctuations in
89 water table caused by the Amazonian flood pulse (Householder et al., 2012;Lahteenoja et al.,
90 2009a). These floodplain systems are dominated by shallow ($\sim 3.9 \text{ m}$) (Lahteenoja et al., 2009a)
91 to deep ($\sim 12.9 \text{ m}$) (Householder et al., 2012) peat deposits. The remaining 10% of these
92 peatlands are not directly influenced by river flow and form domed (i.e. raised) nutrient-poor
93 bogs that likely only receive water and nutrients from rainfall (Lahteenoja et al., 2009b). These
94 nutrient-poor bogs are dominated by large, C-rich forests (termed “pole forests”), that
95 represent a very high density C store (total pool size of $1391 \pm 710 \text{ Mg C ha}^{-1}$, which includes
96 both above- and belowground stocks); exceeding in fact the C density of nearby floodplain
97 systems (Draper et al., 2014). Even though the peats in these nutrient-poor bogs have a
98 relatively high hydraulic conductivity, they act as natural stores of water because of high
99 rainwater inputs ($>3000 \text{ mm per annum}$), which help to maintain positive water tables, even
100 during parts of the dry season (Kelly et al., 2014).

101

102 In order to improve our understanding of the biogeochemistry and rates of GHG exchange
103 from Amazonian peatlands, we conducted a preliminary study of CH₄ and N₂O fluxes from
104 forested peatlands in the PMFB. The main objectives of this research were to:

- 105 1. Quantify the magnitude and range of soil CH₄ and N₂O fluxes from a sub-set of
106 peatlands in the PMFB that represent key dominant vegetation types
- 107 2. Determine seasonal patterns of trace gas exchange
- 108 3. Establish the relationship between trace gas fluxes and environmental variables

109 Sampling was concentrated on the four most dominant vegetation types in the area, based
110 on prior work by the investigators (Lahteenoja and Page, 2011). Trace gas fluxes were
111 captured from both floodplain systems and nutrient-poor bogs in order to account for
112 underlying differences in biogeochemistry that may arise from variations in hydrology.

113 Sampling was conducted during four field campaigns (two wet season, two dry season) over
114 a 27-month period, extending from February 2012 to May 2014.

115

116

117 **4. METHODS AND MATERIALS**

118 **4.1 Study site and sampling design**

119 The study was carried out in the lowland tropical peatland forests of the PMFB, between 2
120 and 35 km south of the city of Iquitos, Peru (Lahteenoja et al., 2009a; Lahteenoja et al., 2009b)
121 (Figure 1, Table 1). The mean annual temperature is 26 °C, annual precipitation is c. 3,100

122 mm, relative humidity ranges from 80-90 %, and altitude ranges from c. 90 to 130 m above
123 sea level (Marengo 1998). The northwestern Amazon basin near Iquitos experiences
124 pronounced seasonality, which is characterized by consistently high annual temperatures, but
125 marked seasonal variation in precipitation (Tian et al., 1998), and an annual river flood pulse
126 linked to seasonal discharge from the Andes (Junk et al., 1989). Precipitation events are
127 frequent, intense and of significant duration during the wet season (November to May) and
128 infrequent, intense and of short duration during the dry season (June to August). Catchments
129 in this region receive no less than 100 mm of rain per month (Espinoza Villar et al., 2009a;
130 Espinoza Villar et al., 2009b) and >3000 mm of rain per year. River discharge varies by season,
131 with the lowest discharge between the dry season months of August and September. Peak
132 discharge from the wet season flood pulse occurs between April and May, as recorded at the
133 Tamshiyaku River gauging station (Espinoza Villar et al., 2009b).

134

135 Soils are classified as pure peat and pure peat with clay and sediment deposits, with an
136 organic content of >50 %. The pH of the soils varied by site and ranged from 3.5 to 7.2
137 (Lahteenoja et al., 2009a; Lahteenoja et al., 2009b; this study). Study sites were classified as
138 either nutrient-rich, intermediate, or nutrient-poor. The former tend to occur on floodplains
139 and river margins, and account for approximately 90 % of the peatland cover in the PMFB,
140 and receive water and nutrient inputs from the annual Amazon river flood pulse (Householder
141 et al., 2012; Lahteenoja et al., 2009a). They are characterized by peat soils which contain
142 higher inorganic mineral content, of which Ca is a dominant constituent (Lahteenoja et al.,
143 2009b). In contrast, the nutrient-poor sites tend to occur further in-land (i.e. away from river
144 margins and floodplains), and receive low or infrequent inputs of water and nutrients from

145 the annual Amazon river flood pulse, and are almost entirely rain-fed (Lahteenoja et al.,
146 2009b). These systems account for only about 10 % of peatland cover in the PMFB (Draper et
147 al., 2014). Soil Ca concentrations are significantly lower in these sites compared to the
148 nutrient-rich ones, with similar concentrations to that of rainwater (Lahteenoja et al., 2009b).

149

150 We established 229 sampling plots ($\sim 30 \text{ m}^2$ per plot) within five tropical peatland sites that
151 captured four of the dominant vegetation types in the region (Draper et al.,
152 2014;Householder et al., 2012;Kelly et al., 2014;Lahteenoja and Page, 2011), and which
153 encompassed a range of nutrient availabilities (Figure 1, Table 1) (Lahteenoja and Page,
154 2011;Lahteenoja et al., 2009a). These four dominant vegetation types included: forested
155 vegetation (nutrient-rich; n= 9 plots), forested (short pole) vegetation (nutrient-poor; n= 19
156 plots), *Mauritia flexuosa*-dominated palm swamp (intermediate fertility, n= 112 plots), and
157 mixed palm swamp (nutrient-rich; n=8 plots) (Table 1). Four of the study sites (Buena Vista,
158 Charo, Miraflores, and Quistococha) were dominated by single vegetation types, whereas San
159 Jorge contained a mixture of *M. flexuosa* palm swamp and forested (short pole) vegetation
160 (Table 1). As a consequence, both vegetation types were sampled in San Jorge to develop a
161 more representative picture of GHG fluxes from this location. Sampling efforts were partially
162 constrained by issues of site access; some locations were difficult to access (e.g. centre of the
163 San Jorge peatland) due to water table height and navigability of river channels; as a
164 consequence, sampling patterns were somewhat uneven, with higher sampling densities in
165 some peatlands than in others (Table 1).

166

167 In each peatland site, transects were established from the edge of the peatland to its centre.
168 Each transect varied in length from 2 to 5 km, depending on the relative size of the peatland.
169 Randomly located sampling plots ($\sim 30 \text{ m}^2$ per plot) were established at 50 or 200 m intervals
170 along each transect, from which GHG fluxes and environmental variables were measured
171 concomitantly. The sampling interval (i.e. 50 or 200 m) was determined by the length of the
172 transect or size of the peatland, with shorter sampling intervals (50 m) for shorter transects
173 (i.e. smaller peatlands) and longer sampling intervals (200 m) for longer transects (i.e. larger
174 peatlands).

175

176 **4.2 Quantifying soil-atmosphere exchange**

177 Soil-atmosphere fluxes (CH_4 , N_2O) were determined in four campaigns over a two-year annual
178 water cycle: February 2012 (wet season), June-August 2012 (dry season), June-July 2013 (dry
179 season), and May-June 2014 (wet season). Gas exchange was quantified using a floating static
180 chamber approach (Livingston and Hutchinson, 1995; Teh et al., 2011). Static flux
181 measurements were made by enclosing a 0.225 m^2 area with a dark, single component,
182 vented 10 L flux chamber. No chamber bases (collars) were used due to the highly saturated
183 nature of the soils. In most cases, a standing water table was present at the soil surface, so
184 chambers were placed directly onto the water. In the absence of a standing water table, a
185 weighted skirt was applied to create an airtight seal. Under these drier conditions, chambers
186 were placed carefully on the soil surface from a distance of no closer than 2 m in order to
187 reduce the risk of pressure-induced ebullition or disruption to soil gas concentration profiles
188 caused by the investigators' footfall. To promote even mixing within the headspace, chambers
189 were fitted with small computer fans (Pumpanen et al., 2004). Headspace samples were

190 collected from each flux chamber at five intervals over a 25 minute enclosure period using a
191 gas tight syringe. Gas samples were stored in evacuated Exetainers® (Labco Ltd., Lampeter
192 UK), shipped to the UK, and subsequently analysed for CH₄, CO₂ and N₂O concentrations using
193 Thermo TRACE GC Ultra (Thermo Fischer Scientific Inc., Waltham, Massachusetts, USA) at the
194 University of St. Andrews. Chromatographic separation was achieved using a Porapak-Q
195 column, and gas concentrations determined using a flame ionization detector (FID) for CH₄, a
196 methanizer-FID for CO₂, and an electron capture detector (ECD) for N₂O. Instrumental
197 precision, determined from repeated analysis of standards, was < 5% for all detectors. Flux
198 rates were determined by using the JMP IN version 11 (SAS Institute, Inc., Cary, North
199 Carolina, USA) package to plot best-fit lines to the data for headspace concentration against
200 time for individual flux chambers (Teh et al., 2014). Gas mixing ratios (ppm) were converted
201 to areal fluxes by using the Ideal Gas Law to solve for the quantity of gas in the headspace (on
202 a mole or mass basis) and normalized by the surface area of each static flux chamber
203 (Livingston and Hutchinson, 1995).

204

205 **4.3 Environmental variables**

206 To investigate the effects of environmental variables on trace gas fluxes, we determined air
207 temperature, soil temperature, chamber headspace temperature, soil pH, soil electrical
208 conductivity (EC; μScm^{-2}), dissolved oxygen concentration of the soil pore water (DO;
209 measured as percent saturation, %) in the top 15 cm of the peat column, and water table
210 position concomitant with gas sampling. Air temperature and chamber headspace
211 temperature were measured using a Check Temp probe and meter. Peat temperature, pH,
212 DO and EC were measured at a depth of 15 cm below the peat surface and recorded *in situ*

213 with each gas sample using a HACH® rugged outdoor HQ30D multi meter and pH, LDO or EC
214 probe. At sites where the water level was above the peat surface, the water depth was
215 measured using a meter rule. Where the water table was at or below the peat surface, the
216 water level was measured by auguring a hole to 1 m depth and measuring water table depth
217 using a meter rule.

218

219 **4.4 Statistical Analyses**

220 Statistical analyses were performed using JMP IN version 11 (SAS Institute, Inc., Cary, North
221 Carolina, USA). Box-Cox transformations were applied where the data failed to meet the
222 assumptions of analysis of variance (ANOVA); otherwise, non-parametric tests were applied.
223 ANOVA and analysis of co-variance (ANCOVA) were used to test for relationships between gas
224 fluxes and vegetation type, season, and environmental variables. When determining the
225 effect of vegetation type on gas flux, data from different study sites (e.g. San Jorge and
226 Miraflores) were pooled together. Means comparisons were tested using a Fisher's Least
227 Significant Difference (LSD) test.

228

229

230 **5. RESULTS**

231 **5. 1 Differences in gas fluxes and environmental variables among vegetation types**

232 All vegetation types were net sources of CH₄, with an overall mean (± standard error) flux of
233 $36.1 \pm 3.1 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$. Soil CH₄ fluxes varied significantly among the four vegetation

234 types sampled in this study (two-way ANOVA with vegetation, season and their interaction,
235 $F_{7, 979} = 13.2$, $P < 0.0001$; Fig. 2a). However, the effect of vegetation was relatively weak (see
236 ANCOVA results in the section 'Relationships between gas fluxes and environmental
237 variables'), and a means comparison test on the pooled data was unable to determine which
238 means differed significantly from the others (Fisher's LSD, $P > 0.05$). For the pooled data, the
239 overall numerical trend was that mixed palm swamp showed the highest mean flux ($52.0 \pm$
240 $16.0 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), followed by *M. flexuosa* palm swamp ($36.7 \pm 3.9 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$),
241 forested (short pole) vegetation ($31.6 \pm 6.6 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$), and forested vegetation (29.8
242 $\pm 10.0 \text{ mg CH}_4\text{-C m}^{-2} \text{ d}^{-1}$).

243

244 These study sites were also a weak net source of N_2O , with a mean flux of $0.70 \pm 0.34 \text{ } \mu\text{g N}_2\text{O-}$
245 $\text{N m}^{-2} \text{ d}^{-1}$. Because of the high variance in N_2O flux among plots, analysis of variance indicated
246 that mean N_2O flux did not differ significantly among vegetation types (two-way ANOVA, $P >$
247 0.5, Fig. 2b). However, when the N_2O flux data were grouped by vegetation type, we see that
248 some vegetation types tended to function as net atmospheric sources, while others acted as
249 atmospheric sinks (Fig. 2b, Table 3). For example, the highest N_2O emissions were observed
250 from *M. flexuosa* palm swamp ($1.11 \pm 0.44 \text{ } \mu\text{g N}_2\text{O-N m}^{-2} \text{ d}^{-1}$) and forested vegetation ($0.20 \pm$
251 $0.95 \text{ } \mu\text{g N}_2\text{O-N m}^{-2} \text{ d}^{-1}$). In contrast, forested (short pole) vegetation and mixed palm swamp
252 were weak sinks for N_2O , with mean fluxes of -0.01 ± 0.84 and $-0.21 \pm 0.70 \text{ } \mu\text{g N}_2\text{O-N m}^{-2} \text{ d}^{-1}$,
253 respectively.

254

255 Soil pH varied significantly among vegetation types (data pooled across all seasons; ANOVA,
256 $P < 0.0001$, Table 2). Multiple comparisons tests indicated that mean soil pH was significantly
257 different for each of the vegetation types (Fisher's LSD, $P < 0.0001$, Table 2), with the lowest
258 pH in forested (short pole) vegetation (4.10 ± 0.04), followed by *M. flexuosa* palm swamp
259 (5.32 ± 0.02), forested vegetation (6.15 ± 0.06), and the mixed palm swamp (6.58 ± 0.04).

260

261 Soil dissolved oxygen (DO) content varied significantly among vegetation types (data pooled
262 across all seasons; Kruskal-Wallis, $P < 0.0001$, Table 2). Multiple comparisons tests indicated
263 that mean DO was significantly different for each of the vegetation types (Fisher's LSD, $P <$
264 0.05 , Table 2), with the highest DO in the forested (short pole) vegetation ($25.2 \pm 2.1 \%$),
265 followed by the *M. flexuosa* palm swamp ($18.1 \pm 1.0 \%$), forested vegetation ($11.8 \pm 2.8 \%$),
266 and the mixed palm swamp ($0.0 \pm 0.0 \%$).

267

268 Electrical conductivity (EC) varied significantly among vegetation types (data pooled across all
269 seasons; Kruskal-Wallis, $P < 0.0001$, Table 2). Multiple comparison tests indicated that mean
270 EC was significantly for each of the vegetation types (Fisher's LSD, $P < 0.05$; Table 2), with the
271 highest EC in the mixed palm swamp ($170.9 \pm 6.0 \mu\text{s m}^{-2}$), followed by forested vegetation
272 ($77.1 \pm 4.2 \mu\text{s m}^{-2}$), *M. flexuosa* palm swamp ($49.7 \pm 1.4 \mu\text{s m}^{-2}$) and the forested (short pole)
273 vegetation ($40.9 \pm 3.5 \mu\text{s m}^{-2}$).

274

275 Soil temperature varied significantly among vegetation types (data pooled across all seasons;
276 ANOVA, $P < 0.0001$, Table 2). Multiple comparisons tests indicated that soil temperature in

277 forested (short pole) vegetation was significantly lower than in the other vegetation types
278 (Table 2); whereas the other vegetation types did not differ in temperature amongst
279 themselves (Fisher's LSD, $P < 0.05$, Table 2).

280

281 Air temperature varied significantly among vegetation types (data pooled across all seasons;
282 ANOVA, $P < 0.0001$, Table 2). Multiple comparisons tests indicated that soil temperature in
283 *M. flexuosa* palm swamp was significantly lower than in the other vegetation types; whereas
284 the other vegetation types did not differ in temperature amongst themselves (Fisher's LSD, P
285 < 0.05 , Table 2).

286

287 Water table depths varied significantly among vegetation types (data pooled across all
288 seasons; ANOVA, $P < 0.0001$, Table 2). The highest mean water tables were observed in mixed
289 palm swamp (59.6 ± 9.3 cm), followed by forested vegetation (34.0 ± 6.9 cm), *M. flexuosa*
290 palm swamp (17.4 ± 1.2 cm), and forested (short pole) vegetation (3.5 ± 1.0 cm) (Fisher's LSD,
291 $P < 0.0005$).

292

293 **5.2 Seasonal variations in gas fluxes and environmental variables**

294 The peatlands sampled in this study showed pronounced seasonal variability in CH_4 fluxes
295 (two-way ANOVA, $F_{7, 979} = 13.2$, $P < 0.0001$; Table 3). In contrast, N_2O fluxes showed no
296 seasonal trends (two-way ANOVA, $P > 0.5$), and therefore will not be discussed further here.
297 For CH_4 flux, the overall trend was towards significantly higher wet season (51.1 ± 7.0 mg CH_4 -

298 $\text{C m}^{-2} \text{d}^{-1}$) compared to dry season ($27.3 \pm 2.7 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$) fluxes (data pooled across all
299 vegetation types; t-Test, $P < 0.001$, Table 3). However, when the CH_4 fluxes were
300 disaggregated by vegetation type, very different seasonal trends emerged. For example, both
301 forested vegetation and mixed palm swamp showed significantly greater CH_4 fluxes during
302 the *dry season* with net fluxes of $47.2 \pm 5.4 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$ and $64.2 \pm 12.1 \text{ mg CH}_4\text{-C m}^{-2}$
303 d^{-1} , respectively (Fisher's LSD, $P < 0.05$, Table 3). In contrast, *wet season* fluxes were 7-16
304 times lower, with net fluxes of $6.7 \pm 1.0 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$ and $6.1 \pm 1.3 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$,
305 respectively (Fisher's LSD, $P < 0.05$, Table 3). In contrast, forested (short pole) vegetation and
306 *M. flexuosa* palm swamp showed seasonal trends consistent with the pooled data set; i.e.
307 significantly higher fluxes during the wet season (46.7 ± 8.4 and $60.4 \pm 9.1 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$,
308 respectively) compared to the dry season (28.3 ± 2.6 and $18.8 \pm 2.6 \text{ mg CH}_4\text{-C m}^{-2} \text{d}^{-1}$,
309 respectively) (Fisher's LSD, $P < 0.05$, Table 3).

310

311 For the environmental variables, soil pH, DO, EC, water table depth, and soil temperature
312 varied significantly between seasons, whereas air temperature did not. Thus, for sake of
313 brevity, air temperature is not discussed further here. Mean soil pH was significantly lower
314 during the wet season (5.18 ± 0.03) than the dry season (5.31 ± 0.04) (data pooled across all
315 vegetation types; t-Test, $P < 0.05$, Table 2). When disaggregated by vegetation type, the
316 overall trend was found to hold true for all vegetation types except forested (short pole)
317 vegetation, which displayed higher pH during the wet season compared to the dry season
318 (Table 2). A two-way ANOVA on Box-Cox transformed data using vegetation type, season and
319 their interaction as explanatory variables indicated that vegetation type was the best

320 predictor of pH, with season and vegetation type by season playing a lesser role ($F_{7, 1166} =$
321 348.9, $P < 0.0001$).

322

323 For DO, the overall trend was towards significantly lower DO during the wet season ($13.9 \pm$
324 1.0 %) compared to the dry season (19.3 ± 1.2 %) (data pooled across all vegetation types;
325 Wilcoxon test, $P < 0.0001$, Table 2). However, when the data were disaggregated by
326 vegetation type, we found that individual vegetation types showed distinct seasonal trends
327 from each other. Forested vegetation and mixed palm swamp were consistent with the
328 overall trend (i.e. lower wet season compared to dry season DO), whereas forested (short
329 pole) vegetation and *M. flexuosa* palm swamp displayed the reverse trend (i.e. higher wet
330 season compared to dry season DO) (Table 2). A two-way ANOVA on Box Cox transformed
331 data using vegetation type, season and their interaction as explanatory variables indicated
332 that vegetation type was the best predictor of DO, followed by a strong vegetation by season
333 interaction; season itself played a lesser role than either of the other two explanatory
334 variables ($F_{7, 1166} = 57.0$, $P < 0.0001$).

335

336 For EC, the overall trend was towards lower EC in the wet season ($49.4 \pm 1.8 \mu\text{s m}^{-2}$) compared
337 to the dry season ($65.5 \pm 2.2 \mu\text{s m}^{-2}$) (data pooled across all vegetation types; Wilcoxon test,
338 $P < 0.05$, Table 2). When the data were disaggregated by vegetation type, this trend was
339 consistent for all the vegetation types except for forested vegetation, where differences
340 between wet and dry season were not statistically significant (Wilcoxon, $P > 0.05$, Table 2).

341

342 Water table depths varied significantly between seasons (data pooled across all vegetation
343 types; Wilcoxon test, $P < 0.0001$, Table 2). Mean water table level was significantly higher in
344 the wet (54.1 ± 2.7 cm) than the dry (1.3 ± 0.8 cm) season. When disaggregated by vegetation
345 type, the trend held true for individual vegetation types (Table 2). All vegetation types had
346 negative dry season water tables (i.e. below the soil surface) and positive wet season water
347 tables (i.e. water table above the soil surface), except for *M. flexuosa* palm swamp that had
348 positive water tables in both seasons. Two-way ANOVA on Box-Cox transformed data using
349 vegetation type, season and their interaction as explanatory variables indicated that all three
350 factors explained water table depth, but that season accounted for the largest proportion of
351 the variance in the model, followed by vegetation by season, and lastly by vegetation type ($F_{7, 1157} = 440.1$, $P < 0.0001$).

353

354 For soil temperature, the overall trend was towards slightly higher temperatures in the wet
355 season ($25.6 \pm 0.0^\circ\text{C}$) compared to the dry season ($25.1 \pm 0.0^\circ\text{C}$) (t-Test, $P < 0.0001$). Analysis
356 of the disaggregated data indicates this trend was consistent for individual vegetation types
357 (Table 2). Two-way ANOVA on Box-Cox transformed data using vegetation type, season and
358 their interaction as explanatory variables indicated that all three variables played a significant
359 role in modulating soil temperature, although season accounted for the largest proportion of
360 the variance whereas the other two factors accounted for a similar proportion of the variance
361 ($F_{7, 1166} = 21.3$, $P < 0.0001$).

362

363 **5.3 Relationships between gas fluxes and environmental variables**

364 To explore the relationship between environmental variables and trace gas fluxes, we
365 conducted an analysis of covariance (ANCOVA) on Box-Cox transformed gas flux data, using
366 vegetation type, season, vegetation by season, and environmental variables as explanatory
367 variables.

368

369 For CH₄, ANCOVA revealed that vegetation by season was the strongest predictor of CH₄ flux,
370 followed by a strong season effect ($F_{13, 917} = 9.2, P < 0.0001$). Other significant drivers included
371 soil temperature, water table depth, and a borderline-significant effect of vegetation type (P
372 < 0.06). The strong effect of vegetation by season reflects the fact that different vegetation
373 types showed seasonal differences in emission patterns, with forested vegetation and mixed
374 palm swamp showing significantly higher dry season compared to wet season emissions,
375 while forested (short pole) vegetation and *M. flexuosa* palm swamp showed the reverse trend
376 (see above; Table 3). The positive relationships between soil temperature, water table depth
377 and CH₄ flux indicate that warmer conditions or higher water tables both stimulate CH₄ flux.
378 However, it is important to note that each of these environmental variables were only weakly
379 correlated with CH₄ flux even if the relationships were statistically significant; when individual
380 bivariate regressions were calculated, the r^2 values were less than 0.01 for each plot.

381

382 For N₂O, ANCOVA indicated that the best predictors of flux rates were dissolved oxygen and
383 conductivity ($F_{13, 1014} = 2.2, P < 0.0082$). As was the case for CH₄ and CO₂, when the
384 relationships between these environmental variables and N₂O flux were explored using

385 individual bivariate regressions, r^2 values were found to be very low (e.g. less than $r^2 < 0.0009$)
386 and not statistically significant.

387

388

389 **6. DISCUSSION**

390 **6.1 Large and asynchronous CH₄ fluxes from peatlands in the Pastaza-Marañón foreland**
391 **basin**

392 The ecosystems sampled in this study were strong atmospheric sources of CH₄. Net CH₄ flux,
393 averaged across all vegetation types, was 36.1 ± 3.1 mg CH₄-C m⁻² d⁻¹, spanning a range from
394 -99.8 to 1,509.7 mg CH₄-C m⁻² d⁻¹. This mean falls within the range of fluxes observed in
395 Indonesian peatlands (3.7-87.8 mg CH₄-C m⁻² d⁻¹) (Couwenberg et al., 2010) and other
396 Amazonian wetlands (7.1-390.0 mg CH₄-C m⁻² d⁻¹) (Bartlett et al., 1990;Bartlett et al.,
397 1988;Devol et al., 1990;Devol et al., 1988). These data suggest that peatlands in the Pastaza-
398 Marañón foreland basin may be strong contributors to the regional atmospheric CH₄ budget,
399 given that the four vegetation types sampled here represent the dominant cover types in the
400 PMFB (Draper et al., 2014;Householder et al., 2012;Kelly et al., 2014;Lahteenoja and Page,
401 2011)

402

403 The overall trend in the data was towards greater temporal (i.e. seasonal) variability in CH₄
404 fluxes rather than spatial (i.e. inter-site) variability. For the pooled dataset, CH₄ emissions
405 were significantly greater during the wet season than the dry season, with fluxes falling by

406 approximately half from one season to the other (i.e. 51.1 ± 7.0 to 27.3 ± 2.7 mg CH₄-C m⁻²
407 d⁻¹). This is in contrast to the data on CH₄ fluxes among study sites, where statistical analyses
408 indicate that there was a weak effect of vegetation type on CH₄ flux, that was on the edge of
409 statistical significance (i.e. ANCOVA; $P < 0.06$ for the vegetation effect term).

410

411 On face value, these data suggest two findings; first, the weak effect of vegetation type
412 implies that patterns of CH₄ cycling are broadly similar among study sites. Second, the strong
413 seasonal pattern suggests that – on the whole – these systems conform to our normative
414 expectations of how peatlands function with respect to seasonal variations in hydrology and
415 redox potential; i.e. enhanced CH₄ emissions during a more anoxic wet season, and reduced
416 CH₄ emissions during a more oxic dry season when water tables fall. However, closer
417 inspection of the data reveals that different vegetation types showed contrasting seasonal
418 emission patterns (Table 3), challenging our basic assumptions about how these ecosystems
419 function. For example, while forested (short pole) vegetation and *M. flexuosa* palm swamp
420 conformed to expected seasonal trends for methanogenic wetlands (i.e. higher wet season
421 compared to dry season emissions), forested vegetation and mixed palm swamp showed the
422 opposite pattern, with significantly greater CH₄ emissions during the dry season. The
423 disaggregated data thus imply that the process-based controls on CH₄ fluxes may vary
424 significantly among these different ecosystems, rather than being similar, leading to a
425 divergence in seasonal flux patterns.

426

427 What may explain this pattern of divergence? One explanation is that CH₄ emissions from
428 forested vegetation and mixed palm swamp, compared to the other two ecosystems, may be
429 more strongly transport-limited during the wet season than the dry season. This
430 interpretation is partially supported by the field data; forested vegetation and mixed palm
431 swamp had the highest wet season water table levels, measuring 110.8 ± 9.3 and 183.7 ± 1.7
432 cm, respectively (Table 2). In contrast, water table levels for forested (short pole) vegetation
433 and *M. flexuosa* palm swamp in the wet season were 3–7 times lower, measuring only 26.9 ±
434 0.5 and 37.2 ± 1.7 cm, respectively (Table 2). The greater depth of overlying water in forested
435 vegetation and mixed palm swamp may therefore have exerted a greater physical constraint
436 on gas transport compared to the other two ecosystems. Although one could argue that the
437 positive relationship between water table depth and CH₄ flux found in the ANCOVA
438 contradicts this interpretation, the relationship between the two variables is so weak (i.e. r^2
439 = 0.005) that we believe it is unlikely that water table alone exerted a strong control over CH₄
440 fluxes.

441

442 However, transport limitation alone does not fully explain the difference in dry season CH₄
443 emissions among vegetation types. Forested vegetation and mixed palm swamp showed
444 substantially higher dry season CH₄ emissions (47.2 ± 5.4 and 85.5 ± 26.4 mg CH₄-C m⁻² d⁻¹,
445 respectively) compared to forested (short pole) vegetation and *M. flexuosa* palm swamp (9.6
446 ± 2.6 and 25.5 ± 2.9 mg CH₄-C m⁻² d⁻¹, respectively), pointing to underlying differences in CH₄
447 production and oxidation among these ecosystems. One possibility is that dry season
448 methanogenesis in forested vegetation and mixed palm swamp was greater than in the other
449 two ecosystems, potentially driven by higher rates of C flow (Whiting and Chanton, 1993).

450 This is plausible given that forested vegetation and mixed palm swamp tend to occur in more
451 nutrient-rich parts of the Pastaza-Marañón foreland basin, whereas forested (short pole)
452 vegetation and *M. flexuosa* palm swamp tend to dominate in more nutrient-poor areas
453 (Lahteenoja et al., 2009a), leading to potential differences in rates of plant productivity.
454 Moreover, it is possible that the nutrient-rich vegetation may be able to utilize the higher
455 concentration of nutrients, deposited during the flood pulse, during the Amazonian dry
456 season (Morton et al., 2014; Saleska et al., 2016), with implications for overall ecosystem C
457 throughput and CH₄ emissions. Of course, this interpretation does not preclude other
458 explanations, such as differences in CH₄ transport rates among ecosystems (e.g. due to plant-
459 facilitated transport or ebullition) (Panagala et al., 2013), or varying rates of CH₄ oxidation
460 (Teh et al., 2005); however, these possibilities cannot be explored further without recourse
461 to more detailed process-level experiments. Forthcoming studies on the regulation of GHG
462 fluxes at finer spatial scales (e.g. investigation of environmental gradients within individual
463 study sites) or diurnal patterns of GHG exchange (Murphy et al., in prep.) will further deepen
464 our understanding of the process controls on soil GHG flux from these peatlands, and shed
465 light on these questions.

466

467 Finally, while the trends described here are intriguing, it is important to acknowledge some
468 of the potential limitations of our data. First, given the uneven sampling pattern, it is possible
469 that the values reported here do not fully represent the entire range of fluxes for the more
470 lightly sampled habitats. However, given the large and statistically significant differences in
471 CH₄ fluxes during different seasons, it is likely that the main trends that we have identified
472 here will hold true with more spatially-extensive sampling. Second, the data presented here

473 represent a conservative estimate of CH₄ efflux because the low frequency sampling approach
474 utilized in this study was unable to capture “hot moments” or erratic ebullition fluxes, which
475 often result in much higher net CH₄ fluxes (McClain et al., 2003). Third and last, our data
476 probably underestimate net CH₄ fluxes for the PMFB because we chose to include fluxes with
477 strong negative values (i.e. more than -10 mg CH₄-C m⁻² d⁻¹) in our calculation of mean flux
478 rates. These observations are more negative than other values typically reported elsewhere
479 in the tropical wetland literature (Bartlett et al., 1990;Bartlett et al., 1988;Devol et al.,
480 1990;Devol et al., 1988;Couwenberg et al., 2010). However, they represent only a small
481 proportion of our dataset (i.e. 7 %, or only 68 out of 980 measurements), and inspection of
482 our field notes and the data itself did not produce convincing reasons to exclude these
483 observations (e.g. we found no evidence of irregularities during field sampling, and any
484 chambers that showed statistically insignificant changes in concentration over time were
485 removed during our quality control procedures). While headspace concentrations for these
486 measurements were often elevated above mean tropospheric levels (>2 ppm), this in itself is
487 not unusual in reducing environments that contain strong local sources of CH₄ (Baldocchi et
488 al., 2012). We did not see this as a reason to omit these values as local concentrations of CH₄
489 are likely to vary naturally in methanogenic forest environments because of poor mixing in
490 the understory. Most importantly, exclusion of these data did not alter the overall statistical
491 trends reported above, and only produced slightly higher estimates of mean CH₄ flux (41.6 ±
492 3.2 mg CH₄-C m⁻² d⁻¹ versus 36.1 ± 3.1 mg CH₄-C m⁻² d⁻¹).

493

494 **6.2 Western Amazonian peatlands as weak atmospheric sources of nitrous oxide**

495 The ecosystems sampled in this study were negligible atmospheric sources of N_2O , emitting
496 only $0.70 \pm 0.34 \mu\text{g N}_2\text{O-N m}^{-2} \text{d}^{-1}$, suggesting that peatlands in the Pastaza-Marañón foreland
497 basin make little or no contribution to regional atmospheric budgets of N_2O . This is consistent
498 with N_2O flux measurements from other forested tropical peatlands, where N_2O emissions
499 were also found to be relatively low (Inubushi et al., 2003; Couwenberg et al., 2010). No
500 statistically significant differences in N_2O flux were observed among study sites or between
501 seasons, suggesting that these different peatlands may have similar patterns of N_2O cycling.
502 Interestingly, differences in N_2O fluxes were not associated with the nutrient status of the
503 peatland; i.e. more nutrient-rich ecosystems, such as forested vegetation and mixed palm
504 swamp, did not show higher N_2O fluxes than their nutrient-poor counterparts, such as
505 forested (short pole) vegetation and *M. flexuosa* palm swamp. This may imply that N
506 availability, one of the principal drivers of nitrification, denitrification, and N_2O production
507 (Groffman et al., 2009; Werner et al., 2007), may not be greater in nutrient-rich versus
508 nutrient-poor ecosystems in this part of the Western Amazon. Alternatively, it is possible that
509 even though N availability and N fluxes may differ between nutrient-rich and nutrient-poor
510 systems, N_2O yield may also vary such that net N_2O emissions are not significantly different
511 among study sites (Teh et al., 2014).

512

513 One potential source of concern are the negative N_2O fluxes that we documented here. While
514 some investigators have attributed negative fluxes to instrumental error (Cowan et al.,
515 2014; Chapuis-Lardy et al., 2007), others have demonstrated that N_2O consumption –
516 particularly in wetland soils – is not an experimental artifact, but occurs due to the complex
517 effects of redox, organic carbon content, nitrate availability, and soil transport processes on
518 denitrification (Ye and Horwath, 2016; Yang et al., 2011; Wen et al., 2016; Schlesinger,

519 2013;Teh et al., 2014;Chapuis-Lardy et al., 2007). Given the low redox potential and high
520 carbon content of these soils, it is plausible that microbial N₂O consumption is occurring,
521 because these types of conditions have been found to be conducive for N₂O uptake elsewhere
522 (Ye and Horwath, 2016;Teh et al., 2014;Yang et al., 2011).

523

524

525 **7. CONCLUSIONS**

526 These data suggest that peatlands in the Pastaza-Marañón foreland basin are strong sources
527 of atmospheric CH₄ at a regional scale, and need to be better accounted for in CH₄ emissions
528 inventories for the Amazon basin as a whole. In contrast, N₂O fluxes were negligible,
529 suggesting that these ecosystems are weak regional sources at best. Most intriguing is the
530 divergent seasonal emissions pattern for CH₄ among different vegetation types, which
531 challenges our understanding and assumptions of how tropical peatlands function. These
532 data highlight the need for more spatially-extensive sampling, in order to establish if this
533 pattern is commonplace across peatlands of the Amazon basin, or if it is unique to the Pastaza-
534 Marañón foreland basin. If CH₄ emission patterns for different peatlands in the Amazon are
535 in fact asynchronous and decoupled from rainfall seasonality, then this may partially explain
536 some of the heterogeneity in CH₄ source and sinks observed at the basin-wide scale (Wilson
537 et al., 2016).

538 **8. AUTHOR CONTRIBUTION**

539 YAT secured the funding for this research, assisted in the planning and design of the
540 experiment, and took the principal role in the analysis of the data and preparation of the
541 manuscript. WAM planned and designed the experiment, collected the field data, analyzed
542 the samples, and took a secondary role in data preparation, data analysis, and manuscript
543 preparation. JCB, AB, and SEP supported the planning and design of the experiment, and
544 provided substantive input into the writing of the manuscript.

545

546

547 **9. ACKNOWLEDGEMENTS**

548 The authors would like to acknowledge the UK Natural Environment Research Council for
549 funding this research (NERC award number NE/I015469). We would like to thank MINAG and
550 the Ministerio de Turismo in Iquitos for permits to conduct this research, the Instituto de
551 Investigaciones de la Amazonía Peruana (IIAP) for logistical support, Peruvian rainforest
552 villagers for their warm welcome and acceptance, Hugo Vasquez, Pierro Vasquez, Gian Carlo
553 Padilla Tenazoa and Yully Rojas Reátegui for fieldwork assistance, Dr Outi Lahteenoja and Dr
554 Ethan Householder for fieldwork planning, and Dr Paul Beaver of Amazonia Expeditions for
555 lodging and logistical support. Our gratitude also goes to Alex Cumming for fieldwork support
556 and laboratory assistance, Bill Hickin, Gemma Black, Adam Cox, Charlotte Langley, Kerry Allen,
557 and Lisa Barber of the University of Leicester for all of their continued support. Thanks are
558 also owed to Graham Hambley (St Andrews), Angus Calder (St Andrews), Viktoria Oliver
559 (Aberdeen), Torsten Diem (Aberdeen), Tom Kelly (Leeds), and Freddie Draper (Leeds) for their

560 help in the laboratory and with fieldwork planning. TD, VO, and two anonymous referees
561 provided very helpful and constructive comments on earlier drafts of this manuscript. This
562 publication is a contribution from the Scottish Alliance for Geoscience, Environment and
563 Society (<http://www.sages.ac.uk>) and the UK Tropical Peatland Working Group
564 (<https://tropicalpeat.wordpress.com>).

565

566

567 **10. REFERENCES**

568 Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.:
569 The challenges of measuring methane fluxes and concentrations over a peatland pasture,
570 Agric. For. Meteorol., 153, 177-187, <http://dx.doi.org/10.1016/j.agrformet.2011.04.013>, 2012.
571 Bartlett, K. B., Crill, P. M., Sebacher, D. I., Harriss, R. C., Wilson, J. O., and Melack, J. M.:
572 METHANE FLUX FROM THE CENTRAL AMAZONIAN FLOODPLAIN, Journal of Geophysical
573 Research-Atmospheres, 93, 1571-1582, 1988.
574 Bartlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E., and Harriss, R. C.: METHANE FLUX
575 FROM THE AMAZON RIVER FLOODPLAIN - EMISSIONS DURING RISING WATER, Journal of
576 Geophysical Research-Atmospheres, 95, 16773-16788, 10.1029/JD095iD10p16773, 1990.
577 Belyea, L. R., and Baird, A. J.: Beyond "The limits to peat bog growth": Cross-scale feedback
578 in peatland development, Ecological Monographs, 76, 299-322, 2006.
579 Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., and Bernoux, M.: Soils, a sink for N₂O?
580 A review, Global Change Biology, 13, 1-17, 10.1111/j.1365-2486.2006.01280.x, 2007.

581 Couwenberg, J., Dommain, R., and Joosten, H.: Greenhouse gas fluxes from tropical
582 peatlands in south-east Asia, *Global Change Biology*, 16, 1715-1732, 10.1111/j.1365-
583 2486.2009.02016.x, 2010.

584 Cowan, N. J., Famulari, D., Levy, P. E., Anderson, M., Reay, D. S., and Skiba, U. M.:
585 Investigating uptake of N₂O in agricultural soils using a high-precision dynamic
586 chamber method, *Atmos. Meas. Tech.*, 7, 4455-4462, 10.5194/amt-7-4455-2014, 2014.

587 D'Amelio, M. T. S., Gatti, L. V., Miller, J. B., and Tans, P.: Regional N₂O fluxes in Amazonia
588 derived from aircraft vertical profiles, *Atmospheric Chemistry and Physics*, 9, 8785-8797,
589 2009.

590 Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., and Martinelli, L. A.: Methane emissions to
591 the troposphere from the Amazon floodplain, *Journal of Geophysical Research:*
592 *Atmospheres*, 93, 1583-1592, 10.1029/JD093iD02p01583, 1988.

593 Devol, A. H., Richey, J. E., Forsberg, B. R., and Martinelli, L. A.: SEASONAL DYNAMICS IN
594 METHANE EMISSIONS FROM THE AMAZON RIVER FLOODPLAIN TO THE TROPOSPHERE,
595 *Journal of Geophysical Research-Atmospheres*, 95, 16417-16426,
596 10.1029/JD095iD10p16417, 1990.

597 Draper, F. C., Roucoux, K. H., Lawson, I. T., Mitchard, E. T. A., Coronado, E. N. H., Lahteenoja,
598 O., Montenegro, L. T., Sandoval, E. V., Zarate, R., and Baker, T. R.: The distribution and
599 amount of carbon in the largest peatland complex in Amazonia, *Environmental Research*
600 *Letters*, 9, 12, 10.1088/1748-9326/9/12/124017, 2014.

601 Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K.,
602 Tague, C., Tonitto, C., and Vidon, P.: Challenges to incorporating spatially and temporally
603 explicit phenomena (hotspots and hot moments) in denitrification models, *Biogeochemistry*,
604 93, 49-77, 10.1007/s10533-008-9277-5, 2009.

605 Householder, J. E., Janovec, J., Tobler, M., Page, S., and Lähteenoja, O.: Peatlands of the
606 Madre de Dios River of Peru: Distribution, Geomorphology, and Habitat Diversity, *Wetlands*,
607 32, 359-368, 10.1007/s13157-012-0271-2, 2012.

608 Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Simmonds, P., Dlugokencky, E. J.,
609 Hall, B., Elkins, J., Steele, P., Langenfelds, R., Krummel, P., Dutton, G., and Porter, L.:
610 Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork
611 measurements, a chemical transport model, and an inverse method, *Journal of Geophysical
612 Research-Atmospheres*, 113, 1-19, D17313
613 10.1029/2007jd009381, 2008.

614 Keller, M., Kaplan, W. A., and Wofsy, S. C.: EMISSIONS OF N₂O, CH₄ AND CO₂ FROM
615 TROPICAL FOREST SOILS, *Journal of Geophysical Research-Atmospheres*, 91, 1791-1802,
616 10.1029/JD091iD11p11791, 1986.

617 Kelly, T. J., Baird, A. J., Roucoux, K. H., Baker, T. R., Honorio Coronado, E. N., Ríos, M., and
618 Lawson, I. T.: The high hydraulic conductivity of three wooded tropical peat swamps in
619 northeast Peru: measurements and implications for hydrological function, *Hydrological
620 Processes*, 28, 3373-3387, 10.1002/hyp.9884, 2014.

621 Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J.,
622 Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S.,
623 Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B.,
624 Fraser, P. J., Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quere, C., Naik, V.,
625 O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M.,
626 Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P.,
627 Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss,

628 R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks,
629 Nature Geoscience, 6, 813-823, 10.1038/ngeo1955, 2013.

630 Lahteenoja, O., Ruokolainen, K., Schulman, L., and Alvarez, J.: Amazonian floodplains
631 harbour minerotrophic and ombratrophic peatlands, Catena, 79, 140-145,
632 10.1016/j.catena.2009.06.006, 2009a.

633 Lahteenoja, O., Ruokolainen, K., Schulman, L., and Oinonen, M.: Amazonian peatlands: an
634 ignored C sink and potential source, Global Change Biology, 15, 2311-2320, 10.1111/j.1365-
635 2486.2009.01920.x, 2009b.

636 Lahteenoja, O., and Page, S.: High diversity of tropical peatland ecosystem types in the
637 Pastaza-Maranon basin, Peruvian Amazonia, Journal of Geophysical Research-
638 Biogeosciences, 116, 14, 10.1029/2010jg001508, 2011.

639 Lahteenoja, O., Reategui, Y. R., Rasanen, M., Torres, D. D., Oinonen, M., and Page, S.: The
640 large Amazonian peatland carbon sink in the subsiding Pastaza-Maranon foreland basin,
641 Peru, Global Change Biology, 18, 164-178, 10.1111/j.1365-2486.2011.02504.x, 2012.

642 Lavelle, P., Rodriguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gomez, Y.,
643 Gutierrez, A., Hurtado, M. D., Loaiza, S., Pullido, S. X., Rodriguez, E., Sanabria, C., Velasquez,
644 E., and Fonte, S. J.: Soil ecosystem services and land use in the rapidly changing Orinoco
645 River Basin of Colombia, Agriculture Ecosystems & Environment, 185, 106-117,
646 10.1016/j.agee.2013.12.020, 2014.

647 Liengaard, L., Nielsen, L. P., Revsbech, N. P., Priem, A., Elberling, B., Enrich-Prast, A., and
648 Kuhl, M.: Extreme emission of N₂O from tropical wetland soil (Pantanal, South America),
649 Frontiers in Microbiology, 3, 13, 10.3389/fmicb.2012.00433, 2013.

650 Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N.,
651 Rydin, H., and Schaepman-Strub, G.: Peatlands and the carbon cycle: from local processes to
652 global implications – a synthesis, *Biogeosciences*, 5, 1475–1491, 2008.
653 Marani, L., and Alvalá, P. C.: Methane emissions from lakes and floodplains in Pantanal,
654 Brazil, *Atmospheric Environment*, 41, 1627-1633,
655 <http://dx.doi.org/10.1016/j.atmosenv.2006.10.046>, 2007.
656 McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S.
657 C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., and Pinay, G.:
658 Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic
659 ecosystems, *Ecosystems*, 6, 301-312, 10.1007/s10021-003-0161-9, 2003.
660 Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Novo,
661 E.: Regionalization of methane emissions in the Amazon Basin with microwave remote
662 sensing, *Global Change Biology*, 10, 530-544, 10.1111/j.1529-8817.2003.00763.x, 2004.
663 Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C.
664 A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P.,
665 Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zurcher, S., Brovkin, V., van Bodegom, P.
666 M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and
667 wetland methane modelling: conclusions from a model inter-comparison project
668 (WETCHIMP), *Biogeosciences*, 10, 753-788, 10.5194/bg-10-753-2013, 2013.
669 Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., Cook, B. D., Vermote, E. F.,
670 Harding, D. J., and North, P. R. J.: Amazon forests maintain consistent canopy structure and
671 greenness during the dry season, *Nature*, 506, 221-224, 10.1038/nature13006
672 [http://www.nature.com/nature/journal/v506/n7487/abs/nature13006.html - supplementary-](http://www.nature.com/nature/journal/v506/n7487/abs/nature13006.html)
673 [information](#), 2014.

674 Nisbet, E. G., Dlugokencky, E. J., and Bousquet, P.: Methane on the Rise—Again, *Science*,
675 343, 493-495, 10.1126/science.1247828, 2014.

676 Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions
677 from natural processes, *Global Biogeochemical Cycles*, 27, 972-989, 10.1002/gbc.20087,
678 2013.

679 Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., Langenfelds,
680 R., Tohjima, Y., Machida, T., Manizza, M., Rigby, M., O'Doherty, S., Patra, P. K., Harth, C. M.,
681 Weiss, R. F., Krummel, P. B., van der Schoot, M., Fraser, P. J., Steele, L. P., Aoki, S.,
682 Nakazawa, T., and Elkins, J. W.: Global and regional emissions estimates for N₂O,
683 *Atmospheric Chemistry and Physics*, 14, 4617-4641, 10.5194/acp-14-4617-2014, 2014.

684 Saleska, S. R., Wu, J., Guan, K., Araujo, A. C., Huete, A., Nobre, A. D., and Restrepo-Coupe,
685 N.: Dry-season greening of Amazon forests, *Nature*, 531, E4-E5, 10.1038/nature16457, 2016.

686 Schlesinger, W. H.: An estimate of the global sink for nitrous oxide in soils, *Global Change
687 Biology*, 19, 2929-2931, 10.1111/gcb.12239, 2013.

688 Schulman, L., Ruokolainen, K., and Tuomisto, H.: Parameters for global ecosystem models,
689 *Nature*, 399, 535-536, 1999.

690 Sjögersten, S., Black, C. R., Evers, S., Hoyos-Santillan, J., Wright, E. L., and Turner, B. L.:
691 Tropical wetlands: A missing link in the global carbon cycle?, *Global Biogeochemical Cycles*,
692 28, 1371-1386, 10.1002/2014GB004844, 2014.

693 Smith, L. K., Lewis, W. M., Chanton, J. P., Cronin, G., and Hamilton, S. K.: Methane emissions
694 from the Orinoco River floodplain, Venezuela., *Biogeochemistry*, 51, 113-140, 2000.

695 Teh, Y. A., Silver, W. L., and Conrad, M. E.: Oxygen effects on methane production and
696 oxidation in humid tropical forest soils, *Global Change Biology*, 11, 1283-1297,
697 10.1111/j.1365-2486.2005.00983.x, 2005.

698 Teh, Y. A., Diem, T., Jones, S., Huaraca Quispe, L. P., Baggs, E., Morley, N., Richards, M.,
699 Smith, P., and Meir, P.: Methane and nitrous oxide fluxes across an elevation gradient in the
700 tropical Peruvian Andes, *Biogeosciences*, 11, 2325-2339, 10.5194/bg-11-2325-2014, 2014.
701 Wen, Y., Chen, Z., Dannenmann, M., Carminati, A., Willibald, G., Kiese, R., Wolf, B.,
702 Veldkamp, E., Butterbach-Bahl, K., and Corre, M. D.: Disentangling gross N₂O production
703 and consumption in soil, *Sci Rep*, 6, 8, 10.1038/srep36517, 2016.
704 Werner, C., Butterbach-Bahl, K., Haas, E., Hickler, T., and Kiese, R.: A global inventory of N₂O
705 emissions from tropical rainforest soils using a detailed biogeochemical model, *Global
706 Biogeochemical Cycles*, 21, 1-18, Gb3010
707 10.1029/2006gb002909, 2007.
708 Whiting, G. J., and Chanton, J. P.: Primary production control of methane emission from
709 wetlands., *Nature*, 364, 794-795, 1993.
710 Wilson, C., Gloor, M., Gatti, L. V., Miller, J. B., Monks, S. A., McNorton, J., Bloom, A. A.,
711 Basso, L. S., and Chipperfield, M. P.: Contribution of regional sources to atmospheric
712 methane over the Amazon Basin in 2010 and 2011, *Global Biogeochem. Cycles*, 30, 400–420,
713 10.1002/2015GB005300, 2016.
714 Yang, W. H., Teh, Y. A., and Silver, W. L.: A test of a field-based N-15-nitrous oxide pool
715 dilution technique to measure gross N₂O production in soil, *Global Change Biology*, 17,
716 3577-3588, 10.1111/j.1365-2486.2011.02481.x, 2011.
717 Ye, R., and Horwath, W. R.: Nitrous oxide uptake in rewetted wetlands with contrasting soil
718 organic carbon contents, *Soil Biology and Biochemistry*, 100, 110-117,
719 <http://dx.doi.org/10.1016/j.soilbio.2016.06.009>, 2016.

720 **11. TABLES AND FIGURES**

721 **Table 1.** Site characteristics including field site location, nutrient status, plot and flux chamber

722 replication

Vegetation type	Site name	Nutrient status*	Latitude (S)	Longitude (W)	Plots	Flux chambers
Forested	Buena Vista	Rich	4°14'45.60"S	73°12'0.20"W	9	74
Forested (short pole)	San Jorge (centre)	Poor	4°03'35.95"S	73°12'01.13"W	3	26
Forested (short pole)	Miraflores	Poor	4°28'16.59"S	74° 4'39.95"W	16	142
M. flexuosa Palm Swamp	Quistococha	Intermediate	3°49'57.61"S	73°12'01.13"W	119	433
M. flexuosa Palm Swamp	San Jorge (edge)	Intermediate	4°03'18.83"S	73°10'16.80"W	6	81
Mixed palm swamp	Charo	Rich	4°16'21.80"S	73°15'27.80"W	8	56

723 *After Householder et al. 2012, Lahteenoja et al. 2009a, and Lahteenoja et al. 2009b

725 **Table 2.** Environmental variables for each vegetation type for the wet and dry season.

726 Values reported here are means and standard errors. Lower case letters indicate significant
727 differences among vegetation types within the wet or dry season (Fisher's LSD, $P < 0.05$).

728

Vegetation Type	Peat Temperature (°C)		Air Temperature (°C)		Conductivity (µS m⁻²)		Dissolved Oxygen (%)		Water Table Level (cm)		pH	
	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season
Forested	26.1 ± 0.1a	24.7 ± 0.0a	28.8 ± 0.7a	26.4 ± 0.3a	79.0 ± 5.9a	75.9 ± 5.7a	0.2 ± 0.1a	18.9 ± 4.4a	110.8 ± 9.3a	-13.2 ± 0.7a	5.88 ± 0.15a	6.31 ± 0.04a
Forested (short pole)	25.2 ± 0.0b	24.8 ± 0.1a	27.6 ± 0.1b	27.5 ± 0.1b	21.0 ± 0.0b	48.5 ± 4.8b	4.4 ± 0.0a	33.1 ± 2.6b	26.9 ± 0.5b	-4.7 ± 0.4b	4.88 ± 0.01b	3.8 ± 0.03b
<i>M. flexuosa</i>	25.6 ± 0.6c	25.3 ± 0.1b	26.3 ± 0.1c	26.4 ± 0.1a	45.9 ± 2.1c	51.9 ± 1.8b	19.4 ± 1.3b	17.3 ± 1.5a	37.2 ± 1.7c	6.1 ± 1.3c	5.04 ± 0.03c	5.49 ± 0.03c
Mixed Palm Swamp	26.0 ± 0.0a	25.0 ± 0.1ab	26.1 ± 0.1c	28.2 ± 0.3b	100.0 ± 0.2d	206.4 ± 4.2c	0.0 ± 0.0a	0.0 ± 0.0c	183.7 ± 1.7d	-2.4 ± 1.7d	6.1 ± 0.3b	6.82 ± 0.03a

729 **Table 3.** Trace gas fluxes for each vegetation type for the wet and dry season. Values reported
730 here are means and standard errors. Upper case letters indicate significant differences in gas
731 flux between seasons with a vegetation type, while lower case letters indicate significant
732 differences among vegetation types within a season (Fisher's LSD, $P < 0.05$).

Vegetation Type	Methane Flux (mg CH ₄ -C m ⁻² d ⁻¹)		Nitrous Oxide Flux (μ g N ₂ O-N m ⁻² d ⁻¹)	
	Wet Season	Dry Season	Wet Season	Dry Season
Forested	6.7 ± 1.0Aa	47.2 ± 5.4Ba	2.54 ± 1.48	-1.16 ± 1.20
Forested (short pole)	60.4 ± 9.1Ab	18.8 ± 2.6Bb	1.16 ± 0.54	-0.42 ± 0.90
<i>M. flexuosa</i> Palm Swamp	46.7 ± 8.4Ac	28.3 ± 2.6Bc	1.14 ± 0.35	0.92 ± 0.61
Mixed Palm Swamp	6.1 ± 1.3Aa	64.2 ± 12.1Ba	1.45 ± 0.79	-0.80 ± 0.79

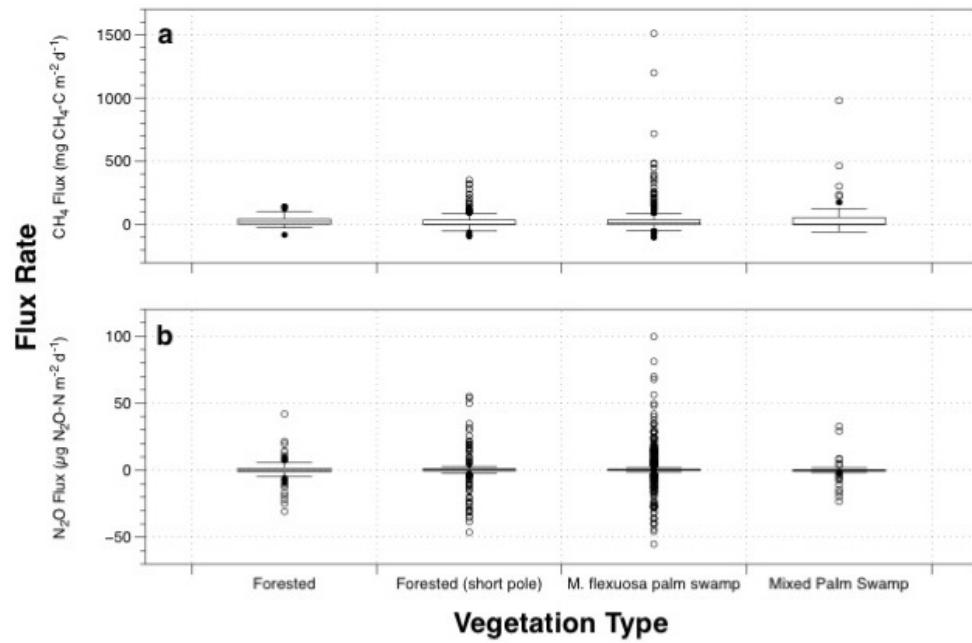
733

734 **Figure Captions**

735 **Figure 1.** Map of the study region and field sites.

736

737 **Figure 2.** Net **(a)** CH₄ and **(b)** N₂O fluxes by vegetation type. Boxes enclose the interquartile
738 range, whiskers indicate the 90th and 10th percentiles. The solid line in each box represents
739 the median. Individual points represent potential outliers.



740 **Figure 1**

741 **Figure 2**

742